TOMI WIJAYA, HARTO (2025) Sentiment Analysis of Twitter Users Towards the Pre-Employment Card Program Using the Naive Bayes Method. S1 thesis, Universitas Ngudi Waluyo.
![]() |
Text
harto tomi wijaya _141201001_lembar-konsultasi - harto tomi Wijaya.pdf Download (373kB) |
![]() |
Text
harto tomi wijaya _141201001_pengesahanartikelpdf - harto tomi Wijaya.pdf Download (792kB) |
![]() |
Text
HARTO TOMI WIJAYA_141201001_Lampirandepan - harto tomi Wijaya.pdf Download (1MB) |
![]() |
Text
HARTO TOMI WIJAYA NIM 141201001- FULLTEXT - harto tomi Wijaya.docx Restricted to Registered users only Download (449kB) | Request a copy |
![]() |
Text
HARTO TOMI WIJAYA NIM 141201001_FULLTEXT - harto tomi Wijaya.pdf Restricted to Registered users only Download (400kB) | Request a copy |
![]() |
Text
harto tomi wijaya _141201001_Halamanjudul - harto tomi Wijaya.pdf Download (57kB) |
![]() |
Text
HARTO TOMI WIJAYA NIM 141201001- ABSTRAK - harto tomi Wijaya.pdf Download (26kB) |
![]() |
Text
HARTO TOMI WIJAYA_NIM_141201001_DAFTAR-PUSTAKA - harto tomi Wijaya (1).pdf Restricted to Registered users only Download (73kB) | Request a copy |
Abstract
This study uses the naive bayes method to analyze comments on Twitter about the pre-employment card program. The results will be compared with ten research journals that use similar or different methods for sentiment analysis on social media. This study found that the naïve bayes method in google collab provides 95% accuracy in classifying sentiment. This comparison shows that this method is competitive with other methods such as support vector machine (SVM), Recurrent Neural Network, and deep learning based methods. Keywords: Sentiment analysis, Twitter, Pre-employment card program, Naive bayes
Item Type: | Thesis (S1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Contributors: |
|
||||||||
Keywords: | Keywords: Sentiment analysis, Twitter, Pre-employment card program, Naive bayes, HARTO TOMI WIJAYA, 141201001 | ||||||||
Subjects: | T Technology > T Technology (General) | ||||||||
Divisions: | Fakultas UNW > S1 Teknologi Informasi | ||||||||
User Id: | UPT Perpustakaan UNW 3 | ||||||||
Date Deposited: | 04 Jun 2025 03:28 | ||||||||
Last Modified: | 04 Jun 2025 03:28 | ||||||||
URI: | http://repository2.unw.ac.id/id/eprint/5053 |
Actions (login required)
![]() |
View Item |